Stable vortex tori in the three-dimensional cubic-quintic Ginzburg-Landau equation.
نویسندگان
چکیده
We demonstrate the existence of stable toroidal dissipative solitons with the inner phase field in the form of rotating spirals, corresponding to vorticity S=0, 1, and 2, in the complex Ginzburg-Landau equation with the cubic-quintic nonlinearity. The stable solitons easily self-trap from pulses with embedded vorticity. The stability is corroborated by accurate computation of growth rates for perturbation eigenmodes. The results provide the first example of stable vortex tori in a 3D dissipative medium, as well as the first example of higher-order tori (with S=2) in any nonlinear medium. It is found that all stable vortical solitons coexist in a large domain of the parameter space; in smaller regions, there coexist stable solitons with either S=0 and S=1, or S=1 and S=2.
منابع مشابه
Vortex induced rotation of clusters of localized states in the complex Ginzburg-Landau equation.
We report existence of a qualitatively distinct class of spiral waves in the two-dimensional cubic-quintic complex Ginzburg-Landau equation. These are stable clusters of localized states rotating around a central vortex core emerging due to interference of the tails of the individual states involved. We also develop an asymptotic theory allowing calculation of the angular frequency and stabilit...
متن کاملStable vortex solitons in the two-dimensional Ginzburg-Landau equation.
In the framework of the complex cubic-quintic Ginzburg-Landau equation, we perform a systematic analysis of two-dimensional axisymmetric doughnut-shaped localized pulses with the inner phase field in the form of a rotating spiral. We put forward a qualitative argument which suggests that, on the contrary to the known fundamental azimuthal instability of spinning doughnut-shaped solitons in the ...
متن کاملPulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion
Time-localized solitary wave solutions of the one-dimensional complex Ginzburg-Landau equation ~CGLE! are analyzed for the case of normal group-velocity dispersion. Exact soliton solutions are found for both the cubic and the quintic CGLE. The stability of these solutions is investigated numerically. The regions in the parameter space in which stable pulselike solutions of the quintic CGLE exis...
متن کاملChirped dissipative solitons of the complex cubic-quintic nonlinear Ginzburg-Landau equation.
Approximate analytical chirped solitary pulse (chirped dissipative soliton) solutions of the one-dimensional complex cubic-quintic nonlinear Ginzburg-Landau equation are obtained. These solutions are stable and highly accurate under condition of domination of a normal dispersion over a spectral dissipation. The parametric space of the solitons is three-dimensional, that makes theirs to be easil...
متن کاملStable localized pulses and zigzag stripes in a two-dimensional diffractive-diffusive Ginzburg-Landau equation
We introduce a model of a two-dimensional (2D) optical waveguide with Kerr nonlinearity, linear and quintic losses, cubic gain, and temporal-domain filtering. In the general case, temporal dispersion is also included, although it is not necessary. The model provides for description of a nonlinear planar waveguide incorporated into a closed optical cavity. It takes the form of a 2D cubic-quintic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 97 7 شماره
صفحات -
تاریخ انتشار 2006